C 参考手册

位置:首页 > C 参考手册 >数值 >常用数学函数 > log1p, log1pf, log1pl

定义于头文件 <math.h>
float       log1pf( float arg );
(1) (C99 起)
double      log1p( double arg );
(2) (C99 起)
long double log1pl( long double arg );
(3) (C99 起)
定义于头文件 <tgmath.h>
#define log1p( arg )
(4) (C99 起)
1-3) 计算 1+arg 的自然(底 e )对数。若 arg 接近零,则此函数比表达式 log(1+arg) 更精确。
4) 泛型宏:若 arg 拥有 long double 类型,则调用 log1pl 。否则,若 arg 拥有整数类型或 double 类型,则调用 log1p 。否则调用 log1pf

参数

arg - 浮点值

返回值

若不出现错误则返回 ln(1+arg)

若出现定义域错误,则返回实现定义值(受支持平台上为 NaN )。

若出现极点错误,则返回 -HUGE_VAL-HUGE_VALF-HUGE_VALL

若出现下溢所致的值域错误,则返回(舍入后的)正确结果。

错误处理

报告 math_errhandling 中指定的错误。

arg 小于 -1 则出现定义域错误。

arg-1 则可能出现极点错误。

若实现支持 IEEE 浮点算术( IEC 60559 ),则

  • 若参数为 ±0 ,则返回不修改的参数。
  • 若参数为 -1 ,则返回 -∞ 并引发 FE_DIVBYZERO
  • 若参数小于 -1 ,则返回 NaN 并引发 FE_INVALID
  • 若参数为 +∞ ,则返回 +∞ 。
  • 若参数为 NaN ,则返回 NaN 。

注意

函数 expm1log1p 对于金融计算有用:例如在计算小的日利率时: (1+x)n
-1
能表示为 expm1(n * log1p(x)) 。这些函数亦简化书写精确的反双曲函数。

示例

#include <stdio.h>
#include <math.h>
#include <float.h>
#include <errno.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
int main(void)
{
    printf("log1p(0) = %f\n", log1p(0));
    printf("Interest earned in 2 days on $100, compounded daily at 1%%\n"
           " on a 30/360 calendar = %f\n",
           100*expm1(2*log1p(0.01/360)));
    printf("log(1+1e-16) = %g, but log1p(1e-16) = %g\n",
           log(1+1e-16), log1p(1e-16));
    // 特殊值
    printf("log1p(-0) = %f\n", log1p(-0.0));
    printf("log1p(+Inf) = %f\n", log1p(INFINITY));
    // 错误处理
    errno = 0; feclearexcept(FE_ALL_EXCEPT);
    printf("log1p(-1) = %f\n", log1p(-1));
    if(errno == ERANGE) perror("    errno == ERANGE");
    if(fetestexcept(FE_DIVBYZERO)) puts("    FE_DIVBYZERO raised");
}

可能的输出:

log1p(0) = 0.000000
Interest earned in 2 days on $100, compounded daily at 1%
 on a 30/360 calendar = 0.005556
log(1+1e-16) = 0, but log1p(1e-16) = 1e-16
log1p(-0) = -0.000000
log1p(+Inf) = Inf
log1p(-1) = -Inf
    errno == ERANGE: Result too large
    FE_DIVBYZERO raised

引用

  • C11 standard (ISO/IEC 9899:2011):
  • 7.12.6.9 The log1p functions (p: 245)
  • 7.25 Type-generic math <tgmath.h> (p: 373-375)
  • F.10.3.9 The log1p functions (p: 522)
  • C99 standard (ISO/IEC 9899:1999):
  • 7.12.6.9 The log1p functions (p: 226)
  • 7.22 Type-generic math <tgmath.h> (p: 335-337)
  • F.9.3.9 The log1p functions (p: 459)

参阅

(C99)(C99)
计算自然对数(底为 e )( ln(x)
(函数)
计算常用对数 (底为 10 )( log10(x)
(函数)
(C99)(C99)(C99)
计算底为 2 的对数( log2(x)
(函数)
(C99)(C99)(C99)
计算 e 的给定次幂减一( ex-1
(函数)