C++ 参考手册
- C++11
- C++14
- C++17
- C++20
- C++ 编译器支持情况表
- 独立与宿主实现
- C++ 语言
- 变量模板(C++14 起)
- 整数字面量
- 聚合初始化
- 比较运算符
- 默认比较(C++20 起)
- 转义序列
- for 循环
- while 循环
- 用户定义转换
- SFINAE
- 主函数
- ASCII 码表
- 标识符
- 类型
- 内存模型
- 对象
- 基本概念
- 表达式
- 声明
- 初始化
- 函数
- 语句
- 类
- 运算符重载
- 模板
- 异常
- 事务性内存
- 占位符类型说明符 (C++11 起)
- decltype 说明符
- 函数声明
- final 说明符 (C++11 起)
- override 说明符(C++11 起)
- 引用声明
- 移动构造函数
- 移动赋值运算符
- 枚举声明
- constexpr 说明符(C++11 起)
- 列表初始化 (C++11 起)
- 构造函数与成员初始化器列表
- using 声明
- nullptr,指针字面量
- 基础类型
- 类型别名,别名模版 (C++11 起)
- 形参包
- 联合体声明
- 字符串字面量
- 用户定义字面量 (C++11 起)
- 属性说明符序列(C++11 起)
- Lambda 表达式 (C++11 起)
- noexcept 说明符 (C++11 起)
- noexcept 运算符 (C++11 起)
- alignof 运算符(C++11 起)
- alignas 说明符 (C++11 起)
- 存储类说明符
- 基于范围的 for 循环 (C++11 起)
- static_assert 声明
- 隐式转换
- 代用运算符表示
- 自增/自减运算符
- 折叠表达式(C++17 起)
- 类模板实参推导(C++17 起)
- 模板形参与模板实参
- if 语句
- inline 说明符
- 结构化绑定声明 (C++17 起)
- switch 语句
- 字符字面量
- 命名空间
- 求值顺序
- 复制消除
- consteval 说明符 (C++20 起)
- constinit 说明符 (C++20 起)
- 协程 (C++20)
- 模块 (C++20 起)
- 约束与概念 (C++20 起)
- new 表达式
- do-while 循环
- continue 语句
- break 语句
- goto 语句
- return 语句
- 动态异常说明
- throw 表达式
- try 块
- 命名空间别名
- 类声明
- cv(const 与 volatile)类型限定符
- 默认初始化
- 值初始化(C++03 起)
- 零初始化
- 复制初始化
- 直接初始化
- 常量初始化
- 引用初始化
- 值类别
- C++ 运算符优先级
- 布尔字面量
- 浮点字面量
- typedef 说明符
- 显式类型转换
- static_cast 转换
- dynamic_cast 转换
- const_cast 转换
- reinterpret_cast 转换
- delete 表达式
- 构造函数与成员初始化器列表
- this 指针
- 访问说明符
- 友元声明
- virtual 函数说明符
- explicit 说明符
- 静态成员
- 默认构造函数
- 复制构造函数
- 复制赋值运算符
- 析构函数
- 类模板
- 函数模板
- 显式(全)模板特化
- 汇编声明
- C++ 的历史
- 作用域
- 生存期
- 定义与单一定义规则(ODR)
- 名字查找
- 有限定的名字查找
- 无限定的名字查找
- 如同规则
- 未定义行为
- 翻译阶段
- 常量表达式
- 赋值运算符
- 算术运算符
- 逻辑运算符
- 成员访问运算符
- 其他运算符
- sizeof 运算符
- typeid 运算符
- 指针声明
- 数组声明
- 语言链接
- 详述类型说明符
- 默认实参
- 变长实参
- 实参依赖查找
- 重载决议
- 重载函数的地址
- 注入类名
- 非静态数据成员
- 非静态成员函数
- 嵌套类
- 派生类
- 空基类优化
- 抽象类
- 位域
- 转换构造函数
- 成员模板
- 模板实参推导
- 部分模板特化
- sizeof... 运算符
- 待决名
- 函数 try 块
- 扩充命名空间 std
- 字母缩写
- RAII
- 三/五/零之法则
- PImpl
- 零开销原则
- 类型
- 隐式转换
- 注释
- C++ 关键词
- 预处理器
- C++ 标准库头文件
- 具名要求
- 功能特性测试 (C++20)
- 工具库
- 类型支持(基本类型、RTTI、类型特性)
- 概念库 (C++20)
- 错误处理
- 动态内存管理
- 日期和时间工具
- 字符串库
- 容器库
- 迭代器库
- 范围库 (C++20)
- 算法库
- 数值库
- 输入/输出库
- 文件系统库
- 本地化库
- 正则表达式库
- 原子操作库
- 线程支持库
- 实验性 C++ 特性
- 有用的资源
- 索引
- std 符号索引
- 协程支持 (C++20)
- C++ 关键词
对象
C++ 程序可以创建、销毁、引用、访问并操作对象。
在 C++ 中,一个对象是拥有这些性质的一段存储区域:
- 大小(可以使用 sizeof 获取);
- 对齐要求(可以使用 alignof 获取);
- 存储期(自动、静态、动态、线程局部);
- 生存期(与存储期绑定,或为临时的)
- 类型;
- 值(可能是不确定的,例如默认初始化的非类类型);
- 名字(可选)。
以下实体都不是对象:值,引用,函数,枚举项,类型,类的非静态成员,位域,模板,类或函数模板的特化,命名空间,形参包,和 this。
变量是由声明所引入的对象或不是非静态数据成员的引用。
对象是由定义,new 表达式,throw 表达式,改变联合体的活跃成员,以及需要临时对象的时候创建的。
对象表示与值表示
对于一个 T
类型的对象,其对象表示 (object representation) 是和它开始于同一个地址,且长度为 sizeof(T) 的一段 unsigned char 类型的对象序列。
对象的值表示 (value representation)则是用于持有它的类型 T
的值的位的集合。
对于可平凡复制 (TriviallyCopyable) 类型,其值表示是对象表示的一部分,这意味着复制该对象在存储中所占据的字节就足以产生另一个具有相同值的对象(除非这个值是该类型的一个“陷阱表示(trap representation)”,将它读取到 CPU 中会产生一个硬件异常,就像浮点值的 SNaN(“Signaling NaN 发信非数”)或整数值的 NaT(“Not a Thing 非事物”))。
反过来不一定是对的:可平凡复制 (TriviallyCopyable) 类型的两个具有不同对象表示的对象可能表现出相同的值。例如,浮点数有多种位模式都表示相同的特殊值 NaN 。更常见的是,对象表示的一些位可能根本不参与值表示;这些位可能是为了满足对齐要求,位域的大小等得以满足而填充其间的。
#include <cassert> struct S { char c; // 1 字节值 // 3 字节填充(假设 alignof(float) == 4 ) float f; // 4 字节值(假设 sizeof(float) == 4 ) bool operator==(const S& arg) const { // 基于值的相等 return c == arg.c && f == arg.f; } }; void f() { static_assert(sizeof(S) == 8); S s1 = {'a', 3.14}; S s2 = s1; reinterpret_cast<unsigned char*>(&s1)[2] = 'b'; // 更改填充的第 2 字节 assert(s1 == s2); // 值并未更改 }
对于 char,signed char,和 unsigned char 类型的对象,除非它们是大小过大的位域,否则其对象表示的每个位都参与其值表示,而且每一种位模式都表示一个独立的值(没有填充位或陷阱位,不允许值的多种表示)。
子对象
一个对象可以包含其他对象,它们被称为子对象。子对象有:
- 成员对象
- 基类子对象
- 数组元素
不是其他任何对象的子对象的对象称为完整对象。
若子对象是以下之一,则它潜在重叠:
- 基类子对象,或
- 声明有
[[no_unique_address]]
属性的非静态数据成员。
完整对象、成员对象和数组元素也被称为最终派生对象 (most derived object) ,以便和基类子对象区分开。不是位域且未被标记为 [[no_unique_address]]
(C++20 起)的最终派生对象的大小不能为零(基类子对象的大小可能为零,即使无 [[no_unique_address]]
也是如此 (C++20 起):参见空基类优化)。
任何两个具有交叠的生存期的(非位域)对象必然有不同的地址,除非其中一个是另一个的子对象或为另一个对象提供存储,或者两个对象都是同一个完整对象中的不同类型的子对象,且其中一个是零大小的子对象。
static const char c1 = 'x'; static const char c2 = 'x'; assert(&c1 != &c2); // 值相同,地址不同
多态对象
声明或继承了至少一个虚函数的类类型的对象是多态对象。每个多态对象中,实现都会储存额外的信息(在所有现存的实现中,如果没被编译器优化掉的话,这就是一个指针),它被用于进行虚函数的调用,RTTI 功能特性(dynamic_cast 和 typeid)也用它在运行时确定对象创建时所用的类型,而不管使用它的表达式是什么类型。
对于非多态对象,值的解释方式由使用对象的表达式所确定,这在编译期就已经决定了。
#include <iostream> #include <typeinfo> struct Base1 { // 多态类型:声明了虚成员 virtual ~Base1() {} }; struct Derived1 : Base1 { // 多态类型:继承了虚成员 }; struct Base2 { // 非多态类型 }; struct Derived2 : Base2 { // 非多态类型 }; int main() { Derived1 obj1; // object1 创建为类型 Derived1 Derived2 obj2; // object2 创建为类型 Derived2 Base1& b1 = obj1; // b1 指代对象 obj1 Base2& b2 = obj2; // b2 指代对象 obj2 std::cout << "b1的表达式类型: " << typeid(decltype(b1)).name() << ' ' << "b2的表达式类型: " << typeid(decltype(b2)).name() << '\n' << "b1 的对象类型: " << typeid(b1).name() << ' ' << "b2 的对象类型: " << typeid(b2).name() << '\n' << "b1 的大小: " << sizeof b1 << ' ' << "b2 的大小: " << sizeof b2 << '\n'; }
可能的输出:
b1 的表达式类型: Base1 b2 的表达式类型: Base2 b1 的对象类型: Derived1 b2 的对象类型: Base2 b1 的大小: 8 b2 的大小: 1
严格的别名使用
在很多情况下,通过类型与对象的创建类型不同的表达式来访问对象都是未定义行为,其例子和例外请参考 reinterpret_cast。
对齐
每个对象类型都具有被称为对齐要求(alignment requirement)的性质,它是一个整数(类型为 std::size_t,总是 2 的幂),表示这个类型的不同对象所能分配放置的连续相邻地址之间的字节数。可以使用 alignof 或 std::alignment_of 来查询类型的对齐要求。可以使用指针对齐函数 std::align 来获取某个缓冲区中经过适当对齐的指针,还可以使用 std::aligned_storage 来获取经过适当对齐的存储区。
对象类型会强制该类型的所有对象实行这个类型的对齐要求;可以使用 alignas 来要求更严格的对齐(更大的对齐要求)。
为了使类中的所有非静态成员都符合对齐要求,会在一些成员后面插入一些填充。
#include <iostream> // S 类型的对象可以在任何地址上分配 // 因为 S.a 和 S.b 都可以在任何地址上分配 struct S { char a; // 大小:1,对齐:1 char b; // 大小:1,对齐:1 }; // 大小:2,对齐:1 // X 类型的对象只能在 4 字节边界上分配 // 因为 X.n 必须在 4 字节边界上分配 // 因为 int 的对齐要求(通常)就是 4 struct X { int n; // 大小:4,对齐:4 char c; // 大小:1,对齐:1 // 三个填充字节 }; // 大小:8,对齐:4 int main() { std::cout << "sizeof(S) = " << sizeof(S) << " alignof(S) = " << alignof(S) << '\n'; std::cout << "sizeof(X) = " << sizeof(X) << " alignof(X) = " << alignof(X) << '\n'; }
可能的输出:
sizeof(S) = 2 alignof(S) = 1 sizeof(X) = 8 alignof(X) = 4
最弱的对齐(最小的对齐要求)是 char 、 signed char 和 unsigned char 的对齐,等于 1 ;所有类型中最大的基础对齐(fundamental alignment)是 std::max_align_t 的对齐。当使用 alignas 使某个类型的对齐比 std::max_align_t 的更严格(更大)时,称其为具有扩展对齐(extended alignment)要求的类型。具有扩展对齐的类型或包含具有扩展对齐的非静态成员的类,称为过对齐(over-aligned)类型。 new 表达式、 std::allocator::allocate 和 std::get_temporary_buffer 是否支持过对齐类型是由实现定义的。以过对齐类型实例化的分配器 (Allocator) ,允许在编译期发生实例化失败,在运行时抛出 std::bad_alloc 异常,安静地忽略不支持的对齐要求,也允许正确的处理它们。